3.7.6 \(\int \frac {(a+\frac {b}{x^2}) (c+\frac {d}{x^2})^{3/2}}{x^9} \, dx\)

Optimal. Leaf size=134 \[ -\frac {c^3 \left (c+\frac {d}{x^2}\right )^{5/2} (b c-a d)}{5 d^5}+\frac {c^2 \left (c+\frac {d}{x^2}\right )^{7/2} (4 b c-3 a d)}{7 d^5}+\frac {\left (c+\frac {d}{x^2}\right )^{11/2} (4 b c-a d)}{11 d^5}-\frac {c \left (c+\frac {d}{x^2}\right )^{9/2} (2 b c-a d)}{3 d^5}-\frac {b \left (c+\frac {d}{x^2}\right )^{13/2}}{13 d^5} \]

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {446, 77} \begin {gather*} \frac {c^2 \left (c+\frac {d}{x^2}\right )^{7/2} (4 b c-3 a d)}{7 d^5}-\frac {c^3 \left (c+\frac {d}{x^2}\right )^{5/2} (b c-a d)}{5 d^5}+\frac {\left (c+\frac {d}{x^2}\right )^{11/2} (4 b c-a d)}{11 d^5}-\frac {c \left (c+\frac {d}{x^2}\right )^{9/2} (2 b c-a d)}{3 d^5}-\frac {b \left (c+\frac {d}{x^2}\right )^{13/2}}{13 d^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b/x^2)*(c + d/x^2)^(3/2))/x^9,x]

[Out]

-(c^3*(b*c - a*d)*(c + d/x^2)^(5/2))/(5*d^5) + (c^2*(4*b*c - 3*a*d)*(c + d/x^2)^(7/2))/(7*d^5) - (c*(2*b*c - a
*d)*(c + d/x^2)^(9/2))/(3*d^5) + ((4*b*c - a*d)*(c + d/x^2)^(11/2))/(11*d^5) - (b*(c + d/x^2)^(13/2))/(13*d^5)

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\left (a+\frac {b}{x^2}\right ) \left (c+\frac {d}{x^2}\right )^{3/2}}{x^9} \, dx &=-\left (\frac {1}{2} \operatorname {Subst}\left (\int x^3 (a+b x) (c+d x)^{3/2} \, dx,x,\frac {1}{x^2}\right )\right )\\ &=-\left (\frac {1}{2} \operatorname {Subst}\left (\int \left (\frac {c^3 (b c-a d) (c+d x)^{3/2}}{d^4}-\frac {c^2 (4 b c-3 a d) (c+d x)^{5/2}}{d^4}+\frac {3 c (2 b c-a d) (c+d x)^{7/2}}{d^4}+\frac {(-4 b c+a d) (c+d x)^{9/2}}{d^4}+\frac {b (c+d x)^{11/2}}{d^4}\right ) \, dx,x,\frac {1}{x^2}\right )\right )\\ &=-\frac {c^3 (b c-a d) \left (c+\frac {d}{x^2}\right )^{5/2}}{5 d^5}+\frac {c^2 (4 b c-3 a d) \left (c+\frac {d}{x^2}\right )^{7/2}}{7 d^5}-\frac {c (2 b c-a d) \left (c+\frac {d}{x^2}\right )^{9/2}}{3 d^5}+\frac {(4 b c-a d) \left (c+\frac {d}{x^2}\right )^{11/2}}{11 d^5}-\frac {b \left (c+\frac {d}{x^2}\right )^{13/2}}{13 d^5}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 115, normalized size = 0.86 \begin {gather*} \frac {\sqrt {c+\frac {d}{x^2}} \left (c x^2+d\right )^2 \left (13 a d x^2 \left (16 c^3 x^6-40 c^2 d x^4+70 c d^2 x^2-105 d^3\right )+b \left (-128 c^4 x^8+320 c^3 d x^6-560 c^2 d^2 x^4+840 c d^3 x^2-1155 d^4\right )\right )}{15015 d^5 x^{12}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b/x^2)*(c + d/x^2)^(3/2))/x^9,x]

[Out]

(Sqrt[c + d/x^2]*(d + c*x^2)^2*(13*a*d*x^2*(-105*d^3 + 70*c*d^2*x^2 - 40*c^2*d*x^4 + 16*c^3*x^6) + b*(-1155*d^
4 + 840*c*d^3*x^2 - 560*c^2*d^2*x^4 + 320*c^3*d*x^6 - 128*c^4*x^8)))/(15015*d^5*x^12)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.09, size = 162, normalized size = 1.21 \begin {gather*} \frac {\sqrt {\frac {c x^2+d}{x^2}} \left (208 a c^5 d x^{12}-104 a c^4 d^2 x^{10}+78 a c^3 d^3 x^8-65 a c^2 d^4 x^6-1820 a c d^5 x^4-1365 a d^6 x^2-128 b c^6 x^{12}+64 b c^5 d x^{10}-48 b c^4 d^2 x^8+40 b c^3 d^3 x^6-35 b c^2 d^4 x^4-1470 b c d^5 x^2-1155 b d^6\right )}{15015 d^5 x^{12}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[((a + b/x^2)*(c + d/x^2)^(3/2))/x^9,x]

[Out]

(Sqrt[(d + c*x^2)/x^2]*(-1155*b*d^6 - 1470*b*c*d^5*x^2 - 1365*a*d^6*x^2 - 35*b*c^2*d^4*x^4 - 1820*a*c*d^5*x^4
+ 40*b*c^3*d^3*x^6 - 65*a*c^2*d^4*x^6 - 48*b*c^4*d^2*x^8 + 78*a*c^3*d^3*x^8 + 64*b*c^5*d*x^10 - 104*a*c^4*d^2*
x^10 - 128*b*c^6*x^12 + 208*a*c^5*d*x^12))/(15015*d^5*x^12)

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 157, normalized size = 1.17 \begin {gather*} -\frac {{\left (16 \, {\left (8 \, b c^{6} - 13 \, a c^{5} d\right )} x^{12} - 8 \, {\left (8 \, b c^{5} d - 13 \, a c^{4} d^{2}\right )} x^{10} + 6 \, {\left (8 \, b c^{4} d^{2} - 13 \, a c^{3} d^{3}\right )} x^{8} + 1155 \, b d^{6} - 5 \, {\left (8 \, b c^{3} d^{3} - 13 \, a c^{2} d^{4}\right )} x^{6} + 35 \, {\left (b c^{2} d^{4} + 52 \, a c d^{5}\right )} x^{4} + 105 \, {\left (14 \, b c d^{5} + 13 \, a d^{6}\right )} x^{2}\right )} \sqrt {\frac {c x^{2} + d}{x^{2}}}}{15015 \, d^{5} x^{12}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)*(c+d/x^2)^(3/2)/x^9,x, algorithm="fricas")

[Out]

-1/15015*(16*(8*b*c^6 - 13*a*c^5*d)*x^12 - 8*(8*b*c^5*d - 13*a*c^4*d^2)*x^10 + 6*(8*b*c^4*d^2 - 13*a*c^3*d^3)*
x^8 + 1155*b*d^6 - 5*(8*b*c^3*d^3 - 13*a*c^2*d^4)*x^6 + 35*(b*c^2*d^4 + 52*a*c*d^5)*x^4 + 105*(14*b*c*d^5 + 13
*a*d^6)*x^2)*sqrt((c*x^2 + d)/x^2)/(d^5*x^12)

________________________________________________________________________________________

giac [B]  time = 4.63, size = 550, normalized size = 4.10 \begin {gather*} \frac {32 \, {\left (15015 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{18} a c^{\frac {11}{2}} \mathrm {sgn}\relax (x) + 48048 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{16} b c^{\frac {13}{2}} \mathrm {sgn}\relax (x) - 3003 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{16} a c^{\frac {11}{2}} d \mathrm {sgn}\relax (x) + 96096 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{14} b c^{\frac {13}{2}} d \mathrm {sgn}\relax (x) - 6006 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{14} a c^{\frac {11}{2}} d^{2} \mathrm {sgn}\relax (x) + 109824 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{12} b c^{\frac {13}{2}} d^{2} \mathrm {sgn}\relax (x) - 28314 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{12} a c^{\frac {11}{2}} d^{3} \mathrm {sgn}\relax (x) + 37752 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{10} b c^{\frac {13}{2}} d^{3} \mathrm {sgn}\relax (x) + 13728 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{10} a c^{\frac {11}{2}} d^{4} \mathrm {sgn}\relax (x) + 5720 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{8} b c^{\frac {13}{2}} d^{4} \mathrm {sgn}\relax (x) + 5720 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{8} a c^{\frac {11}{2}} d^{5} \mathrm {sgn}\relax (x) - 2288 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{6} b c^{\frac {13}{2}} d^{5} \mathrm {sgn}\relax (x) + 3718 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{6} a c^{\frac {11}{2}} d^{6} \mathrm {sgn}\relax (x) + 624 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{4} b c^{\frac {13}{2}} d^{6} \mathrm {sgn}\relax (x) - 1014 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{4} a c^{\frac {11}{2}} d^{7} \mathrm {sgn}\relax (x) - 104 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{2} b c^{\frac {13}{2}} d^{7} \mathrm {sgn}\relax (x) + 169 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{2} a c^{\frac {11}{2}} d^{8} \mathrm {sgn}\relax (x) + 8 \, b c^{\frac {13}{2}} d^{8} \mathrm {sgn}\relax (x) - 13 \, a c^{\frac {11}{2}} d^{9} \mathrm {sgn}\relax (x)\right )}}{15015 \, {\left ({\left (\sqrt {c} x - \sqrt {c x^{2} + d}\right )}^{2} - d\right )}^{13}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)*(c+d/x^2)^(3/2)/x^9,x, algorithm="giac")

[Out]

32/15015*(15015*(sqrt(c)*x - sqrt(c*x^2 + d))^18*a*c^(11/2)*sgn(x) + 48048*(sqrt(c)*x - sqrt(c*x^2 + d))^16*b*
c^(13/2)*sgn(x) - 3003*(sqrt(c)*x - sqrt(c*x^2 + d))^16*a*c^(11/2)*d*sgn(x) + 96096*(sqrt(c)*x - sqrt(c*x^2 +
d))^14*b*c^(13/2)*d*sgn(x) - 6006*(sqrt(c)*x - sqrt(c*x^2 + d))^14*a*c^(11/2)*d^2*sgn(x) + 109824*(sqrt(c)*x -
 sqrt(c*x^2 + d))^12*b*c^(13/2)*d^2*sgn(x) - 28314*(sqrt(c)*x - sqrt(c*x^2 + d))^12*a*c^(11/2)*d^3*sgn(x) + 37
752*(sqrt(c)*x - sqrt(c*x^2 + d))^10*b*c^(13/2)*d^3*sgn(x) + 13728*(sqrt(c)*x - sqrt(c*x^2 + d))^10*a*c^(11/2)
*d^4*sgn(x) + 5720*(sqrt(c)*x - sqrt(c*x^2 + d))^8*b*c^(13/2)*d^4*sgn(x) + 5720*(sqrt(c)*x - sqrt(c*x^2 + d))^
8*a*c^(11/2)*d^5*sgn(x) - 2288*(sqrt(c)*x - sqrt(c*x^2 + d))^6*b*c^(13/2)*d^5*sgn(x) + 3718*(sqrt(c)*x - sqrt(
c*x^2 + d))^6*a*c^(11/2)*d^6*sgn(x) + 624*(sqrt(c)*x - sqrt(c*x^2 + d))^4*b*c^(13/2)*d^6*sgn(x) - 1014*(sqrt(c
)*x - sqrt(c*x^2 + d))^4*a*c^(11/2)*d^7*sgn(x) - 104*(sqrt(c)*x - sqrt(c*x^2 + d))^2*b*c^(13/2)*d^7*sgn(x) + 1
69*(sqrt(c)*x - sqrt(c*x^2 + d))^2*a*c^(11/2)*d^8*sgn(x) + 8*b*c^(13/2)*d^8*sgn(x) - 13*a*c^(11/2)*d^9*sgn(x))
/((sqrt(c)*x - sqrt(c*x^2 + d))^2 - d)^13

________________________________________________________________________________________

maple [A]  time = 0.05, size = 118, normalized size = 0.88 \begin {gather*} \frac {\left (\frac {c \,x^{2}+d}{x^{2}}\right )^{\frac {3}{2}} \left (208 a \,c^{3} d \,x^{8}-128 b \,c^{4} x^{8}-520 a \,c^{2} d^{2} x^{6}+320 b \,c^{3} d \,x^{6}+910 a c \,d^{3} x^{4}-560 b \,c^{2} d^{2} x^{4}-1365 a \,d^{4} x^{2}+840 b c \,d^{3} x^{2}-1155 b \,d^{4}\right ) \left (c \,x^{2}+d \right )}{15015 d^{5} x^{10}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/x^2)*(c+d/x^2)^(3/2)/x^9,x)

[Out]

1/15015*((c*x^2+d)/x^2)^(3/2)*(208*a*c^3*d*x^8-128*b*c^4*x^8-520*a*c^2*d^2*x^6+320*b*c^3*d*x^6+910*a*c*d^3*x^4
-560*b*c^2*d^2*x^4-1365*a*d^4*x^2+840*b*c*d^3*x^2-1155*b*d^4)*(c*x^2+d)/d^5/x^10

________________________________________________________________________________________

maxima [A]  time = 0.63, size = 152, normalized size = 1.13 \begin {gather*} -\frac {1}{1155} \, {\left (\frac {105 \, {\left (c + \frac {d}{x^{2}}\right )}^{\frac {11}{2}}}{d^{4}} - \frac {385 \, {\left (c + \frac {d}{x^{2}}\right )}^{\frac {9}{2}} c}{d^{4}} + \frac {495 \, {\left (c + \frac {d}{x^{2}}\right )}^{\frac {7}{2}} c^{2}}{d^{4}} - \frac {231 \, {\left (c + \frac {d}{x^{2}}\right )}^{\frac {5}{2}} c^{3}}{d^{4}}\right )} a - \frac {1}{15015} \, {\left (\frac {1155 \, {\left (c + \frac {d}{x^{2}}\right )}^{\frac {13}{2}}}{d^{5}} - \frac {5460 \, {\left (c + \frac {d}{x^{2}}\right )}^{\frac {11}{2}} c}{d^{5}} + \frac {10010 \, {\left (c + \frac {d}{x^{2}}\right )}^{\frac {9}{2}} c^{2}}{d^{5}} - \frac {8580 \, {\left (c + \frac {d}{x^{2}}\right )}^{\frac {7}{2}} c^{3}}{d^{5}} + \frac {3003 \, {\left (c + \frac {d}{x^{2}}\right )}^{\frac {5}{2}} c^{4}}{d^{5}}\right )} b \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)*(c+d/x^2)^(3/2)/x^9,x, algorithm="maxima")

[Out]

-1/1155*(105*(c + d/x^2)^(11/2)/d^4 - 385*(c + d/x^2)^(9/2)*c/d^4 + 495*(c + d/x^2)^(7/2)*c^2/d^4 - 231*(c + d
/x^2)^(5/2)*c^3/d^4)*a - 1/15015*(1155*(c + d/x^2)^(13/2)/d^5 - 5460*(c + d/x^2)^(11/2)*c/d^5 + 10010*(c + d/x
^2)^(9/2)*c^2/d^5 - 8580*(c + d/x^2)^(7/2)*c^3/d^5 + 3003*(c + d/x^2)^(5/2)*c^4/d^5)*b

________________________________________________________________________________________

mupad [B]  time = 6.81, size = 248, normalized size = 1.85 \begin {gather*} \frac {16\,a\,c^5\,\sqrt {c+\frac {d}{x^2}}}{1155\,d^4}-\frac {128\,b\,c^6\,\sqrt {c+\frac {d}{x^2}}}{15015\,d^5}-\frac {4\,a\,c\,\sqrt {c+\frac {d}{x^2}}}{33\,x^8}-\frac {a\,d\,\sqrt {c+\frac {d}{x^2}}}{11\,x^{10}}-\frac {14\,b\,c\,\sqrt {c+\frac {d}{x^2}}}{143\,x^{10}}-\frac {b\,d\,\sqrt {c+\frac {d}{x^2}}}{13\,x^{12}}-\frac {a\,c^2\,\sqrt {c+\frac {d}{x^2}}}{231\,d\,x^6}+\frac {2\,a\,c^3\,\sqrt {c+\frac {d}{x^2}}}{385\,d^2\,x^4}-\frac {8\,a\,c^4\,\sqrt {c+\frac {d}{x^2}}}{1155\,d^3\,x^2}-\frac {b\,c^2\,\sqrt {c+\frac {d}{x^2}}}{429\,d\,x^8}+\frac {8\,b\,c^3\,\sqrt {c+\frac {d}{x^2}}}{3003\,d^2\,x^6}-\frac {16\,b\,c^4\,\sqrt {c+\frac {d}{x^2}}}{5005\,d^3\,x^4}+\frac {64\,b\,c^5\,\sqrt {c+\frac {d}{x^2}}}{15015\,d^4\,x^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b/x^2)*(c + d/x^2)^(3/2))/x^9,x)

[Out]

(16*a*c^5*(c + d/x^2)^(1/2))/(1155*d^4) - (128*b*c^6*(c + d/x^2)^(1/2))/(15015*d^5) - (4*a*c*(c + d/x^2)^(1/2)
)/(33*x^8) - (a*d*(c + d/x^2)^(1/2))/(11*x^10) - (14*b*c*(c + d/x^2)^(1/2))/(143*x^10) - (b*d*(c + d/x^2)^(1/2
))/(13*x^12) - (a*c^2*(c + d/x^2)^(1/2))/(231*d*x^6) + (2*a*c^3*(c + d/x^2)^(1/2))/(385*d^2*x^4) - (8*a*c^4*(c
 + d/x^2)^(1/2))/(1155*d^3*x^2) - (b*c^2*(c + d/x^2)^(1/2))/(429*d*x^8) + (8*b*c^3*(c + d/x^2)^(1/2))/(3003*d^
2*x^6) - (16*b*c^4*(c + d/x^2)^(1/2))/(5005*d^3*x^4) + (64*b*c^5*(c + d/x^2)^(1/2))/(15015*d^4*x^2)

________________________________________________________________________________________

sympy [B]  time = 19.45, size = 326, normalized size = 2.43 \begin {gather*} - \frac {a c \left (- \frac {c^{3} \left (c + \frac {d}{x^{2}}\right )^{\frac {3}{2}}}{3} + \frac {3 c^{2} \left (c + \frac {d}{x^{2}}\right )^{\frac {5}{2}}}{5} - \frac {3 c \left (c + \frac {d}{x^{2}}\right )^{\frac {7}{2}}}{7} + \frac {\left (c + \frac {d}{x^{2}}\right )^{\frac {9}{2}}}{9}\right )}{d^{4}} - \frac {a \left (\frac {c^{4} \left (c + \frac {d}{x^{2}}\right )^{\frac {3}{2}}}{3} - \frac {4 c^{3} \left (c + \frac {d}{x^{2}}\right )^{\frac {5}{2}}}{5} + \frac {6 c^{2} \left (c + \frac {d}{x^{2}}\right )^{\frac {7}{2}}}{7} - \frac {4 c \left (c + \frac {d}{x^{2}}\right )^{\frac {9}{2}}}{9} + \frac {\left (c + \frac {d}{x^{2}}\right )^{\frac {11}{2}}}{11}\right )}{d^{4}} - \frac {b c \left (\frac {c^{4} \left (c + \frac {d}{x^{2}}\right )^{\frac {3}{2}}}{3} - \frac {4 c^{3} \left (c + \frac {d}{x^{2}}\right )^{\frac {5}{2}}}{5} + \frac {6 c^{2} \left (c + \frac {d}{x^{2}}\right )^{\frac {7}{2}}}{7} - \frac {4 c \left (c + \frac {d}{x^{2}}\right )^{\frac {9}{2}}}{9} + \frac {\left (c + \frac {d}{x^{2}}\right )^{\frac {11}{2}}}{11}\right )}{d^{5}} - \frac {b \left (- \frac {c^{5} \left (c + \frac {d}{x^{2}}\right )^{\frac {3}{2}}}{3} + c^{4} \left (c + \frac {d}{x^{2}}\right )^{\frac {5}{2}} - \frac {10 c^{3} \left (c + \frac {d}{x^{2}}\right )^{\frac {7}{2}}}{7} + \frac {10 c^{2} \left (c + \frac {d}{x^{2}}\right )^{\frac {9}{2}}}{9} - \frac {5 c \left (c + \frac {d}{x^{2}}\right )^{\frac {11}{2}}}{11} + \frac {\left (c + \frac {d}{x^{2}}\right )^{\frac {13}{2}}}{13}\right )}{d^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x**2)*(c+d/x**2)**(3/2)/x**9,x)

[Out]

-a*c*(-c**3*(c + d/x**2)**(3/2)/3 + 3*c**2*(c + d/x**2)**(5/2)/5 - 3*c*(c + d/x**2)**(7/2)/7 + (c + d/x**2)**(
9/2)/9)/d**4 - a*(c**4*(c + d/x**2)**(3/2)/3 - 4*c**3*(c + d/x**2)**(5/2)/5 + 6*c**2*(c + d/x**2)**(7/2)/7 - 4
*c*(c + d/x**2)**(9/2)/9 + (c + d/x**2)**(11/2)/11)/d**4 - b*c*(c**4*(c + d/x**2)**(3/2)/3 - 4*c**3*(c + d/x**
2)**(5/2)/5 + 6*c**2*(c + d/x**2)**(7/2)/7 - 4*c*(c + d/x**2)**(9/2)/9 + (c + d/x**2)**(11/2)/11)/d**5 - b*(-c
**5*(c + d/x**2)**(3/2)/3 + c**4*(c + d/x**2)**(5/2) - 10*c**3*(c + d/x**2)**(7/2)/7 + 10*c**2*(c + d/x**2)**(
9/2)/9 - 5*c*(c + d/x**2)**(11/2)/11 + (c + d/x**2)**(13/2)/13)/d**5

________________________________________________________________________________________